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Abstract. The Lax representation in terms of 2× 2 matrices is constructed for separable
multiply-periodic systems splitting on two tori. Hyperelliptic Kleinian functions and their
reduction to elliptic functions are used.

1. Introduction

Completely integrable systems with two degrees of freedom and dynamics splitting on two
tori have been largely investigated during recent years as examples of separable multiply-
periodic systems. The list of such systems includes the well known integrable cases of the
Hénon–Heiles system [1], several integrable cases of quartic potentials [2], the motion of a
particle in the Coulomb potential and in external uniform field, the Chaplygin top [3], etc. A
Lax representation for these systems can be readily constructed in terms of a direct product
of Lax operators [1], one for each splitting tori, as first proposed in [4]. This approach for
a system of two particles leads to 4× 4 Lax representations (see e.g. [1, 2]), thus making
the quantization of the above systems much more difficult to perform. In order to simplify
the quantum problem it would be more convenient to use Lax representations in terms of
2× 2 matrices. The problem of the existence of such representations for the above systems
is still open.

The aim of the present paper is to show how to construct Lax representations in terms
of 2× 2 matrices for dynamics splitting on two tori. The main idea is to use a hyperelliptic
curve of genus two, which is aN -sheeted cover of two given elliptic curves. Such covers
are known to exist for anyN > 1 and for arbitrary tori (see e.g. [5–7]). It is clear that,
if the hyperelliptic curve is associated with a Hamiltonian system for which a 2× 2 Lax
representation is known, one can readily construct a similar representation for the two tori
dynamics simply by using the transformation induced by the covering. To illustrate this
approach we take as a working example the integrable cases of the Hénon–Heiles system
[8]. The possibilities of the generalization of this approach to the system with more than
two degrees of freedom is briefly discussed at the end of the paper.

2. Reduction

Consider the hyperelliptic curveV = (y, z) of genus two,

y2 = 4z5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0 (1)
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with λi ∈ C, chosen in such a way that (1) takes the form

w2 = z(z − 1)(z − α)(z − β)(z − αβ). (2)

The curve (2) gives a two-sheeted covering of two toriπ± : V = (w, z) → E± = (η±, ξ±),

η2
± = ξ±(1 − ξ±)(1 − k2

±ξ±) (3)

with Jacobi moduli

k2
± = − (

√
α ∓ √

β)2

(1 − α)(1 − β)
. (4)

Equation (4) can be inverted as

α + β = 2
k2
+ + k2

−
(k′+ − k′+)2

αβ =
(

k′
+ + k′

−
k′+ − k′+

)2

(5)

wherek′
± are additional Jacobian moduli,k2

± + k′2
± = 1. Explicitly, the coversπ± are given

by

η± = −
√

(1 − α)(1 − β)
z ∓ √

αβ

(z − α)2(z − β)2
w (6)

ξ+ = ξ− = (1 − α)(1 − β)z

(z − α)(z − β)
. (7)

Let (y1, x1), (y2, x2) be arbitrary points on a symmetric degreeV ×V . The Jacobi inversion
problem is the problem of finding this point as a functionu = (u1, u2) from the equations∫ x1

x0

dz

w
+

∫ x2

x0

dz

w
= u1 (8)∫ x1

x0

z dz

w
+

∫ x2

x0

z dz

w
= u2. (9)

We write ∫ x1

x0

z − √
αβ

w
dz +

∫ x2

x0

z − √
αβ

w
dz = u+ (10)∫ x1

x0

z + √
αβ

w
dz +

∫ x2

x0

z + √
αβ

w
dz = u− (11)

with

u± = −
√

(1 − α)(1 − β)(u2 ∓
√

αβu1). (12)

We can reduce the hyperelliptic integrals in (10) and (11) to elliptic ones by using the
formula

dξ±
η±

= −
√

(1 − α)(1 − β)(z ∓
√

αβ)
dz

w
. (13)

Let us introduce the coordinates (see [9])

X1 = sn(u+, k+)sn(u−, k−)

X2 = cn(u+, k+)cn(u−, k−)

X3 = dn(u+, k+)dn(u−, k−) (14)
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where sn(u±, k±), cn(u±, k±), and dn(u±, k±) denote usual Jacobi elliptic functions [10].
Applying the addition theorem for Jacobi elliptic functions,

sn(u1 + u2, k) = s2
1 − s2

2

s1c2d2 − s2c1d1

cn(u1 + u2, k) = s1c1d2 − s2c2d1

s1c2d2 − s2c1d1

dn(u1 + u2, k) = s1d1c2 − s2d2s1

s1c2d2 − s2c1d1

wheresi = sn(ui, k), ci = cn(ui, k), di = dn(ui, k), i = 1, 2, we can write equations (14)
in the form

X1 = − (1 − α)(1 − β)(αβ + ℘12)

(α + β)(℘12 − αβ) + αβ℘22 + ℘11
(15)

X2 = − (1 + αβ)(αβ − ℘12) − αβ℘22 − ℘11

(α + β)(℘12 − αβ) + αβ℘22 + ℘11
(16)

X3 = αβ℘22 − ℘11

(α + β)(℘12 − αβ) + αβ℘22 + ℘11
. (17)

Here ℘ij are Kleinian ℘-functions which solve the Jacobi inversion problem and are
expressed in terms of(y1, x1), (y2, x2) as follows,

℘22 = x1 + x2 ℘12 = −x1x2 ℘11 = F(x1, x2) − 2y1y2

4(x1 − x2)2

and

F(x1, x2) =
k=2∑
k=0

xk
1xk

2(2λ2k + λ2k+1(x1 + x2)) (18)

with λ’s calculated from (2). The Kleinian℘-functions are known to be a natural
generalization of the Weierstrass elliptic functions and can then be expressed through the
second logarithmic derivative of the Kleinianσ -function,

℘ij (u) = −∂2 ln σ(u)

∂ui∂uj

i, j = 1, 2

(for details see [5, 11]). The three functions℘22, ℘12, ℘11 are algebraically dependent and
are coordinates for the so-called Kummer surface which is a quartic surface inC3. For later
convenience we remark that the formulae (15)–(17) can be inverted as

℘11 = (B − 1)
A(X2 + X3) − B(X3 + 1)

X1 + X2 − 1
(19)

℘12 = (B − 1)
1 + X1 − X2

X1 + X2 − 1
(20)

℘22 = A(X2 − X3) + B(X3 − 1)

X1 + X2 − 1
(21)

whereA = α + β, B = 1 + αβ.
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3. Lax representation

Let us consider the following equations for the four-indexed functions℘:

℘2222 = 6℘2
22 + 4℘12 + λ4℘22 + 1

2λ3 (22)

℘1222 = 6℘22℘12 − 2℘11 + λ4℘12 (23)

with λ3 and λ4 arbitrary. The first equation, afteru2 differentiation, is the standard KdV
equation written with respect to the function℘22 while the second equation represents the
stationary flow for the two gap KdV solution(℘22) of the third vector field of the KdV
hierarchy. As is well known, equations (22) and (23) can be written in the Lax form [12],

∂L
∂t

= [M, L] L =
(

V U

W −V

)
M =

(
0 1
Q 0

)
. (24)

Here we take the elements of the matricesL andM to be polynomials inx of the form

U = x2 − ℘22x − ℘12 (25)

V = −1

2

∂U

∂u2
(26)

W − −1

2

∂2U

∂u2
2

+ UQ (27)

Q = x + 2℘22 + 1
4λ4. (28)

The discriminant curve det(L − yE) = 0 (E is the 2× 2 unit matrix) then has the form of
equation (1) withλ4, λ3, λ0 arbitrary andλ2, λ1 chosen as the level set of the integrals of
motion:

−λ2 = −℘2
222 + 4℘11 + λ3℘22 + 4℘3

22 + 4℘12℘22 + λ4℘
2
22 (29)

− 1
2λ1 = −℘222℘221 + 2℘2

12 − 2℘11℘22 + 1
2λ3℘12 + 4℘12℘

2
22 + λ4℘12℘22. (30)

The following proposition represents the main result of the paper.

Proposition. Let

U = x2 − A(X2 − X3) + B(X3 − 1)

X1 + X2 − 1
x + (B − 1)

X1 − X2 + 1

X1 + X2 − 1
(31)

Q = x + 2
A(X2 − X3) + B(X3 − 1)

X1 + X2 − 1
+ A + B (32)

whereXi are the coordinates given in (14) andA = α + β, B = αβ + 1 are expressed in
terms of Jacobian modulik± according to (5). Then the Lax equation (24) is equivalent to
the equations for Jacobi elliptic functions,

d

du±
sn(u±; k±) =

√
(1 − sn2(u±; k±)(1 − k2±sn2(u±; k±)). (33)

To prove this statement one can expand sn(u±; k±) aroundu± =0 to obtain equation (33)
from (24) with superscripts ‘±’. We remark that a direct substitution of (19)–(21) into the
equations of motion (22) and (23) would be quite involved even for symbolic calculations
on a computer.
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4. An example: Lax representation for the integrable cases of the H́enon–Heiles
system

Let us apply the above result to the integrable cases of the Hénon–Heiles system (see e.g.
[8]). One of them (case (ii) in the terminology of [8]) is isomorphic to the fifth-order
stationary KdV flow, thus giving a Lax representation in terms of 2× 2 matrices. The
other two cases—cases (i) and (iii)—are isomorphic to the fifth stationary flows of the
Sawada–Kotera and Kaup–Kuperschmidt equations, respectively. They both lead to Lax
representations in terms of 3× 3 matrices [8]. The 4× 4 Lax representation is derived in
[1]. Let us show how to construct the 2× 2 Lax representation for cases (i) and (iii).

Consider first the integrable case (i). The HamiltonianH and second integral motion
K have the form

H = 1
2p2

1 + 1
2p2

2 + q1q
2
2 + 1

3q3
1 + a(q2

1 + q2
2) (34)

K = p1p2 + 1
3q3

2 + q2q
2
1 + 2aq1q2. (35)

The Hamiltonian system is separated in Cartesian coordinates,q1,2 = Q̃1 ± Q̃2, p1,2 =
P̃1 ± P̃2 and the dynamics is splitting to two tori

P̃ 2
1 = − 4

3Q̃3
1 − 2aQ̃2

1 + 1
2(H̃ + K̃)

P̃ 2
2 = − 4

3Q̃3
2 − 2aQ̃2

2 + 1
2(H̃ − K̃) (36)

whereH̃ = P̃ 2
1 + 4

3Q̃3
1 + 4

3Q̃3
3 + 2a(Q̃2

1 + Q̃2
2), K̃ = P̃ 2

1 − P̃ 2
2 + 4

3Q̃3
1 − 4

3Q̃3
3 + 2a(Q̃2

1 − Q̃2
2).

By passing from (36) to the standard form of the elliptic curve (33) we find

℘±
(

it√
3

)
= 1

2(q1(t) ± q2(t) + a) (37)

with ℘± standard Weierstrass elliptic functions with modulie±
i , i = 1, 2, 3 satisfying the

equations

4e±
1 e±

2 e±
3 = a3 − 3

2(H̃ ± K̃) 8(e±
1 e±

2 + e±
1 e±

3 + e±
2 e±

3 ) + 3
2a2 = 0. (38)

The Lax representation (24) is then valid for the system with

X1 =
√

2e+
1 − 2e+

3

q1 + q2 + a − 2e+
3

√
2e−

1 − 2e−
3

q1 − q2 + a − 2e−
3

X2 =
√

q1 + q2 + a − 2e+
1

q1 + q2 + a − 2e+
3

√
q1 − q2 + a − 2e−

1

q1 − q2 − 2e−
3

X3 =
√

q1 + q2 + a − 2e+
2

q1 + q2 + a − 2e+
3

√
q1 − q2 + a − 2e−

2

q1 − q2 + a − 2e−
3

.

As shown in [13], the integrable case (iii) is linked to case (i) by means of a canonical
transformation. The corresponding 2× 2 Lax representation can then be derived from the
representation of case (i) by means of this transformation.

5. Concluding remarks

In closing this paper we make the following remark. Equip the curve by the canonical
basis of cyclesA1, A2, B1, B2 and normalize the holomorphic differentials dvi =
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(ci1 + zci2) dz/w(z), i = 1, 2, in such a way that the Riemann matrixΩ has the following
form

Ω =
( ∮

A1
dv1

∮
A2

dv1
∮
B1

dv1
∮
B2

dv1∮
A1

dv2
∮
A2

dv2
∮
B1

dv2
∮
B2

dv2

)
=

(
1 0 τ11 τ12

0 1 τ12 τ22

)
. (39)

It is known (see e.g. [6, 7, 9]) that the curve (1) coversN -sheetedly two tori if and only
if the Riemann matrixΩ can be transformed by some linear transformation of the basis
cycles to the form

τ =
(

τ11
1
N

1
N

τ22

)
where the positive integerN is also called the Picard number. The condition for the matrix
τ to be transformed to the form given above is thatτ belongs to the Humbert surfaceHN

HN = {ατ11 + βτ12 + γ τ22 + δ(τ 2
12 − τ11τ22) + ε = 0,

α, β, γ, δ, ε ∈ Z, β2 − 4(αγ + εδ) = N2}.
The case considered in this paper corresponds, among the infinite transformations of

N th order which permit one to reduce the dynamics of a two-particle system associated
with the N -sheeted covering of tori, just to the caseN = 2. It is clear, however, that the
above analysis can be extended to curves of high genus.

These arguments were used in [7] to describe elliptic potentials of the Schrödinger
equation, which were also studied in the framework of spectral theory [14–16].

The authors are grateful to V Kuznetsov who attracted their attention to the problem
discussed. The research described in this publication was supported in part by grant
No U44000 (VZE) from the ISF and INTAS grant No 93-1324 (VZE and MS).

References

[1] Ravoson V, Gavrilov L and Gaboz R 1993 Separability and Lax pair for Hénon–Heiles systemJ. Math.
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